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On the structure of a class of aerothermodynamic shocks 
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Some recent work on the existence of vibrational de-excitation shocks (&shocks) 
in expanding non-equilibrium nozzle flows is extended to include situations in 
which an adiabatic shock (a-shock) may be embedded within the de-excitation 
shock. A discussion of some further properties of the shock solution is given and 
some examples are worked out. Numerical solutions of the full equations are 
also presented. These solutions confirm the existence of the &shocks but bring 
to light certain anomalies in the simple approximate solution. The modifications 
necessary to remove these discrepancies are outlined, and the implications of 
the numerical results are briefly discussed. Finally, some comments on the nature 
of the asymptotic solution for an arbitrary rate process are made. 

1. Introduction 
In a paper by Blythe// (1967) it was shown that a phenomenon closely analogous 

to a condensation shock may occur in expanding nozzle flows in a vibrationally 
relaxing gas. This phenomenon is characterized by a sudden and rapid de-excita- 
tion of the lagging internal mode; associated with the de-excitation is a weak 
compression. The bulk of the energy from the vibrational mode is fed into the 
translational and rotational degrees of freedom which are assumed to remain in a 
local equilibrium state. These de-excitation shocks, or &shocks, fall into the 
general class of aerothermodynamic shocks discussed by Polachek & Seeger 
(1958). 

The analysis in the present paper is concerned with extending and clarifying 
some of the earlier work. Exact numerical solutions are presented which confirm 
the existence of this type of de-excitation shock. In  addition, some new results 
are obtained for more general rate processes. 
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The shocks can occur in near-frozen flows when the local pseudo-entropy 
(Broer 1951 and I, 11) 

S,= - 

becomes significant. Here u is the vibrational energy, T is the translational 
temperature and 2 is a suitable axial co-ordinate. Johannesen (1961) has pointed 
out that continuum non-equilibrium flows are in general equivalent to the flow 
of some inert gas (the a-gas) with heat addition Aq = -Ag .  For vibrational 
relaxation (1.1) defines the entropy? of this a-gas, and the shock region obviously 
corresponds to a local heat release or increase in S,. As noted above and in 11, 
an equivalence with condensation shocks is immediately apparent. 

Although the growth of S, provides a qualitative indication of the onset of 
any region of rapid de-excitation, detailed statements about the occurrence and 
position of the &shock can only be made if certain features of the nozzle geometry 
and rate of heat addition are specified. In particular, when the low-temperature 
behaviour of the relaxation time r is given by 

7-l N pT8, (1.2) 

where p is the density, it was shown in I1 that, for nozzles whose area A grows 
asymptotically as some power v of the axial distance, &shocks exist in an ideal 
vibrationally relaxing gas if s> 1, (1-3) 

and I =  l -v {2 -y+(y - l )b )  > 0. (1.4) 

Here y is the specific-heat ratio for the active modes. 
Note, however, that the qualitative criterion on 8, suggests that there will 

be other situations in which &shocks occur, or at least in which significant de- 
excitation takes place (see below). The extension to more general rate processes 
is discussed in $5. (Consideration of other asymptotic nozzle shapes is given in 
$5.2.) 

It is, in fact, condition (1.4) that corresponds directly to the qualitative state- 
ment on s,, but &-shocks exist only if the additional condition (1.3) holds. 
This latter requirement implies a restriction on the rate at  which heat is added. 
The onset of de-excitation in the low-temperature, near-frozen, region far down- 
stream can lead to an increase in the translational temperature which causes a 
local reduction in the relaxation time. This process is in some sense unstable since 
any reduction in r leads to EL further increase in the translational temperature, 
etc. It was shown in I1 that for 6 > 1 this process is limited by a rapid return 
to equilibrium conditions through a &shock. For 6 < 1 the process is limited both 
by a marked return towards an equilibrium flow and by the effects of the local 
area increase. This latter case corresponds to a gradual de-excitation region. 
Apart from a discussion of the asymptotic limiting solution in $5, the analysis 
in this paper is mainly confined to the shock case 6 > 1. 

The possible existence of de-excitation shocks has been suggested earlier 
(see, for example, Feldman 1958) with specific reference to two-dimensional flow 

t For other rate processes this definition is not necessarily as straightforward (see $ 5 
and appendix B), but the physical mechanism governing the 8-shocks is similar. 
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problems. Bartlma (1965) noted the apparent existence of both weak (oblique) 
and strong (normal) shocks in some approximate numerical solutions for two- 
dimensional nozzle flows in a relaxing gas, though these results should be treated 
with caution because of the approximations involved. Mohammad (1967) and 
Johannesen ( 1968) have also observed a non-uniqueness in some characteristics 
calculations for one-dimensional unsteady flow. The shocks discussed in I1 
differ from those reported by Bartlma and by Mohammad and Johannesen in 
that their structure is continuous: in this sense the shocks can be termed fully 
dispersed (Lighthill 1956). For the two-dimensional flows, the shocks are partly 
dispersed, and any local region of rapid de-excitation includes a conventional 
Rankine-Hugoniot shock (the a-shock). The precise connexion between the one- 
dimensional S-shock of I1 and these two-dimensional calculations is not clear. 
In this paper only the quasi-one-dimensional situation is examined. 

Although the supersonic 6-shock solutions described in I1 were continuous 
discontinuous, (supersonic-subsonic) solutions of the equations are possible. It 
was assumedin I1 that the nozzle back pressure was zero, or at  least less than the 
pressure at  the downstream limit of the 6-shock. For finite back-pressures con- 
ventional adiabatic shocks (a-shocks) may be embedded within the de-excitation 
shock. Solutions applicable to this case are outlined in $3. 

For this type of flow it is useful to consider the possible transitions through the 
S-shock by means of a modified Rayleigh-line diagram. Instead of the conventional 
temperature, entropy co-ordinates, a more convenient transition diagram is the 
T, plane (see $3) .  In this diagrama-shocksoccur at  fixed values of the vibrational 
energy. 

A well-known result associated with the Rayleigh-line diagram for the flow of 
a perfect gas with heat addition concerns the existence of an upper bound to the 
magnitude of the heat input above which the flow chokes. A significant result 
derived in this paper shows that, irrespective of the amount of energy in the lagging 
mode, the present class of non-equilibrium flows do not break down in this way: 
choking is prevented by the strong coupling between the energy and rate equations. 

There is apparently no experimental evidence, at  least to the authors’ know- 
ledge, either to confirm or to deny the existence of S-shocks in nozzle flows with 
vibrational relaxation. Moreover, numerical calculations, based on the full 
quasi-one-dimensional relations, were not available for the conditions under 
which the shocks should occur. In  order to verify both that solutions of the full 
equations did possess regions of rapid de-excitation for appropriate conditions, 
and that the approximate solution did predict the structure and position of 
these regions, some numerical calculations for the full equations were carried 
out. At the same time detailed calculations based on the approximate solutions, 
which are outlined in $52 and 3, were made. 

The calculations were performed for the ideal vibrationally relaxing diatomic 
gas (Johannesen 1961). It should be stressed that this is a fairly severe test of 
the theory since the energy content of the vibrational mode may be quite small 
in comparison with the total internal energy. For rate processes in which this 
energy content is larger, the error terms in the approximate theory wil l  be 
relatively smaller. 



352 P .  A .  Blythe, D .  G .  Petty, D.  A .  Schojield and J .  L. Wilson 

However, the numerical solutions clearly show the existence of the &shocks 
and the agreement with the simple theory for the shock position is satisfactory. 
The shock structure is also predicted reasonably well by the theory, though 
values of the local maximum in the translational temperature at  the downstream 
limit of the shock are, in general, noticeably different from the values given by 
the approximate solution. It is conjectured that, for sufficiently large values of 
v, this discrepancy is mainly due to the effects of a finite area change through the 
shock. A similarity argument confirming this conjecture is presented in $4. 
If v is small other factors have to be taken into account; the uniform channel 
limit, v + 0, is also discussed in $ 4. 

In  I1 it was shown that the &-shock occurs at  ‘large’ distances downstream of 
the throat. A significant feature of the numerical calculations has been the magni- 
tude of this distance. For a number of practical situations the shock position 
was typically 105-106 diameters downstream of the throat, but in some cases 
rather diffuse shocks were found to occur at around lo3 diameters. This latter 
distance is roughly equivalent to the maximum nozzle length of some current 
hypersonic facilities. 

Although these results for vibrational de-excitation in a diatomic gas would 
seem to suggest that experimental verification would be difficult, this is not 
necessarily true for all rate processes. In  cases where a considerable amount of 
energy is involved the shock may occur appreciably nearer the throat. It is 
relatively straightforward to obtain the dependence of the shock position on the 
energy content in the lagging mode for a fairly general class of rate processes 
(see $ 5 ) .  It is perhaps worth remarking that in order to find the shock position 
the only knowledge of the rate equation required is its behaviour in a near- 
frozen state. Unfortunately, the extension to include the shock structure depends 
strongly on the type of rate process considered, though some comments are made 
in $ 5  on the asymptotic solution downstream of the shock. Throughout this 
paper it is assumed that the rate of change of internal energy depends only on 
local conditions and, if necessary, appropriate initial parameters (see $5). 

2. The shock equations 
Unless otherwise stated, the notation used here is as in I and 11. All basic 

variables are non-dimensionalized with respect to suitable reservoir conditions 
(see appendix A and I, $2.5). For the flow through the 8-shock (see 11, $ 3 )  the 
governing equations can be written 

where 
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and urn is the initial speed far upstream of the shock. crm is the initial (reservoir) 
value of the vibrational energy. 

Here T,, P, and y, are related to the corresponding variables defined in I1 by 

uo(cQ) (y-m 
T, = IIY;, P, = nlT, y, = Y;+ (?) y. 

In (2.6) the scaled density Il and the stretched variable y are related to the basic 
physical variables by (11, $82, 3). 

IT = A-v~zpuo(m)/mo, y = A-d ( Y  - Y,), Y = Allx, (2.7) 

where d = (y- l)v(S- 1)1-1, (2.8) 

defines the shock position and 
A l + ( y -  1) 6 

(2.10) 

is a modified rate parameter. The non-dimensional rate parameter A (characteris- 
tic ratio of flow time to relaxation time) is defined with respect to reservoir con- 
ditions and the throat height (see appendix A). A derivation of the result 
corresponding to (2.9) for a more general rate process is given in $ 5 .  (The reader 
may wish to refer to that section for a brief discussion of the various scaling laws 
noted above.) 

The conservation relations (2.1) to (2.3) are valid in the limit h+O. According 
to the right-hand sides of these expressions, conditions ahead of the shock corres- 
pond to a low-temperature near-frozen state: uo(co) (see (2.5)) is apparently 
the fluid speed immediately upstream of the shock. 

Since the explicit dependence of the shock solution on Y,  is eliminated, the 
present choice of dependent and independent variables is preferred to those 
used in 11. For a given urn and y the solution depends only on the parameters 
contained in the modified relaxation frequency Q(T) and the energy term crm. 
In  this paper attention is confined to the case 

For simplicity, it is also assumed that 51 can be described by its low-temperature 

throughout the shock region. As observed in the introduction, the shock solu- 
tion is appropriate for 6 > 1. If the flow is initially in equilibrium 

(2.13) cra = crm(Bw) = Bv/(eew- l), 

It follows that for a given y ( = p for a diatomic or linear molecule) the shock 

urn = 0. (2.11) 

behaviour Q = T 6  (2.12) 

- 

where 19, is the characteristic temperature of vibration. 

solution will depend on the parameters 8, and 6 only, and can be written 

(2.14) 

23 Fluid Mech. 37 



354 P. A .  Blythe, D.  G. Petty, D. A .  Schojkld and J .  L. Wilson 

where the heat input 
Q ( g ;  0,) = 2(y2- 1) ( g m  - g)/u%m). (2.15) 

As usual the upper sign in (2.14) corresponds to a supersonic solution? and the 
lower sign to a subsonic solution. Q is given as a function of y1 from the integrated 
form of the rate equation 

where the lower limit Q1 has been inserted for convenience and = &(3;8,). 

8,  = 0 

0.5 

- 80 - 60 - 20 0 i0 

Yl 

FIQURE 1. De-excitation shock profiles for 8 = 1.5. 

The constant C in (2.16) is evaluated by matching with the solution valid up- 
stream of the shock. This latter solution, termed the pseudo-entropy solution in 
I1 (see below §5), shows that for non-integer values of S 

(2.17) 

For integer values there is an additional term 

aSFl(y - l)v Z-l log A, (2.18) 

where asbl is the coefficient of Q8-’ in the expansion of the integrand as Q -+ 0 
(see Petty 1968). 

The integral I has been evaluated numerically for a range of values of S and 
0,. Figure 1 shows some typical results for the shock profile when 6 = 1.5 for 
various 0,. As might be expected, an increase in the initial vibrational energy 

t With respect to the frozen sound speed. This should be understood throughout. 
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leads to a steeper shock profile. Results for other values of 6 show no qualitative 
difference. Comparison with exact numerical calculations for the full equations is 
deferred until 3 4. 

3. The Rayleigh-line and related diagrams 
Diabatic flows of the general kind considered here are usually discussed in the 

temperature-entropy plane. For the present class of non-equilibrium flows 
entropy, in its usual sense, is not clearly defined. However, as noted in the intro- 
duction, the quantity 

AAS, = S,-(J!~,)~ = -lv:$ (3-1) 

can be referred to as the change in the pseudo-entropy: S, is identifiable with 
the entropy of the a-gas of Johannesen. A convenient datum point for the pseudo- 
entropy is the point Q = 0 on the subsonic branch. From (2.14) 

The T , S ,  diagram is shown in figure 2. Note that on the supersonic branch 

1 
A,#, N - log T (3.3) 

Y-1 
as T+O. 

In  nozzle flows where &shocks occur, the initial conditions are always super- 
sonic with Q = o(1). If the nozzle back-pressure is zero the solution remains 
supersonic; but if the back-pressure is finite any region of supersonic flow may 
be terminated by a conventional adiabatic shock (the a-shock). The solution down- 
stream of the a-shock is defined by the subsonic branch of the &shock solution. 
(In the limit considered here the thickness of the a-shock, which is defined by the 
diffusive effects of viscosity and heat conduction, is negligible in comparison with 
the thickness of the &shock.) 

The transition from the supersonic to the subsonic branches occurs at  constant 
Q. A constant Q jump is shown in figure 2. Note that S, increases across the a- 
shock. Since the transition across the a-shock is verysimply defined in the (T, &)- 
plane, it is convenient to use this diagram (see figure 3), when discussing solutions 
involving a-shocks. 

Conditions at  the downstream limit of the 8-shock are given by the equilibrium 
value Q = &. These equilibrium paths are 

where (3.4) 

The intersection of these lines with the (F, &)-curve defines both the final super- 
sonic state and the final subsonic state (see figure 3). 

In general, there are three main situations to consider for finite values of the 
back-pressure Pb : 

(i) Pe > Pb, where Pe is the equilibrium pressure at  the downstream limit of the 
23-2 
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supersonic 8-shock. I n  this case any a-shock lies downstream of the &shock 
and the solution through the &shock remains supersonic. 

(ii) P, 2 P,. The a-shock is now embedded within the &shock. 

I I 
-1.0 -@!8 -o!6 -o$ -0.2 

I I I I 
0.6 0-8 0.2 0.4 0 

f lu- ( f l u ) l l  

FIGURE 2. Rayleigh-line diagram. 

Z0 t 

Q 
FIUURE 3. (T, Q)-plane. 

(iii) P, < < P,. The a-shock terminates the region of supersonic frozen flow. 
Downstream of the a-shock there will be a return to equilibrium conditions. 

Case (ii) is probably of most interest. It was shown in I1 that on the supersonic 
branch the flow initially remains near to equilibrium downstream of the shock, 
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where the effects of area change must again be taken into account, On the sub- 
sonic branch it can be shown that equilibrium flow is the only possible limiting 
solution. (In the supersonic case there may be an eventual departure from the 
equilibrium solution. Since this occurs exponentially far downstream of the 
primary &-shock, it is of little practical interest.) 

Typical paths in the (T, &)-plane are shown in figure 4. It is apparent from 
figure 4, and the (P,,T)-relation in the subsonic 8-shock, that the pressure may 

Subsonic 

1.0 < J 

0.6 - 
a-shock a -shock 

T 

0.4 - 

0.2 - 

0 0.04 0.08 0.12 0.16 n zn 

Q 
Figure 4. Possible a-shock paths. 

I 

0 X 

FIGURE 5. Typical pressure distributions (schematic). 



358 P. A .  Blythe, D. G.  Petty, D.  A .  Schojield and J .  L. Wilson 

initially decrease behind the a-shock, but for nozzles of sufficient length the 
pressure will always ultimately rise following the subsonic equilibrium curve 
(see figure 5). A simple inverse scheme for obtaining solutions in these cases is to 
define the shock position by a given value of Q = Q, and then, for a given nozzle 
length, evaluate the back pressure P, from the subsonic equilibrium solution. 

I 
I I I I I I  I 0.01 0.03 0.05 0.07 

Y1 

( b )  

FIG~RE 6. (a) Adiabatic shocks and their relaxation zones for 8 = 1.5, 0, = 1.5. ( b )  Re- 
laxation zone for S = 1.5, 0, = 1.5, (enlarged); the a-shock occurs at y1 = 0. 

Some calculations for the de-excitation region are shown in figures 6 (a) and ( b ) .  
The passage through the a-shock leads to a marked decrease in the local value of 
the relaxation time and hence the width of the relaxation region behind the 
a-shock is very narrow in comparison with the upstream part of the 8-shock. 

In the classical treatment of flows with heat addition, solutions do not exist 
for Q > 1: the sonic point, Q = 1, corresponds to thermal choking. However, 
for the non-equilibrium flows considered here the mechanism of the heat input 
is not independent of the flow. Moreover, it was noted in I1 that choking could not 
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occur in a diatomic gas, though it is not immediately apparent that Q < 1 in a 
polyatomic gas with an arbitrary number of vibrational modes which relax 
together. 

It is sufficient to consider initial equilibrium conditions with u, = 0. (All 
flows, even with cr, + iYW, are assumed to be derived from some equilibrium 
reservoir without any external heat addition. A slight modification in the argu- 
ment given below leads to similar results for these cases.) Suppose, first, that no 
a-shock occurs. Upstream of the 8-shock u > 3 and it follows from the rate equa- 
tion that cr is a monotonically decreasing function of x with a limiting value, in 
the 8-shock, defined by equilibrium conditions u = u, = 5, < 5m. Since Ti is a 
monotonically increasing function of T ,  it follows that T, < 1. Hence from (2.14) 
and (2.5),  Q < 1 if 

y < 1.839 ... . 
If an a-shock occurs within the &-shock then Q, < (Qe)sup < 1 by definition. 

Since Tsub > Tsup and Q is a monotonically decreasing function of T 

(Qe)sub < (Qe)sup, 

and therefore Q < 1 on the subsonic branch. 

ber of vibrational modes n, it can be shown that as n + m 
Although the above argument establishes that Q < 1 ,  irrespective of the num- 

1 - T, = O ( l / n ) .  

4. Numerical solutions and higher approximations 
4.1. Nozzle shapes and the shock-position 

Probably the simplest way to check the analytical solutions described in I1 
and in $ § 2  and 3 of this paper is to compare them with numerical solutions of 
the full equations. The numerical solutions used in this paper were found from 
an adaptation of the programme described by Wilson, Schofield & Lapworth 
(1967). Por the analytical solutions the asymptotic nozzle shape has the form 

A - CX”. (4.1)  

The convergent-divergent nozzle shapes used in the numerical calculations belong 
to the family 

A = 1+x2  ( x  < xo), ( 4 . 2 ~ )  

A = C ( ~ - U ) ’  ( X  xO). (4 .2b)  

Both A and dA/dx are continuous at xo, or 

(4 -3 )  a = x  0 -1 zv(x~l+xo), c = (2x0/v)”(1+x~)l-’. 

Previous calculations reported in the literature have not, to the authors’ 
knowledge, included cases in which weak compressions (&shocks) occur. A typical 
example from the present calculations is shown in figure 7 .  The region of frozen 
flow, prior to the collapse through the shock, is obviously extensive. Some com- 
ment on this point is made below in 54.3. 
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The analytical solution described earlier is also shown in figure 7. Agreement 
between this approximate solution and the exact solution is good, particularly 
for the shock position, though there is a significant difference in the values for the 
maximum temperature at the downstream edge of the shock. Apart from this 
shift in temperature, the initial equilibrium decay downstream of the shock 
agrees well with theoretical predictions. 

log,, x 

FIGURE 7. A typical 8-shock. -, numerical ; - - -, approximate analytical solution. 
0 - 1.0, A = 1.0, 8 = 1.5, x,, = 1.0, v = 0.3. 

71 - 

The &shock position for the numerical solutions is defined as the point at 
which the translational temperature attains the value corresponding to y1 = 0 
(x = A-l/zYs) in the analytical solution. Equations (2.7) and (2.9) can be re- 
arranged, for the asymptotic nozzle shape (4.1)) to give 

xs = K X ,  (y ,  v, 61, (4.4) 

where (4.5) 

and K = (AgmC(l-W)-l/l. (4.6) 

Note that in (2.7) and (2.9), m, must be replaced by rn,C-l to account for the 
corresponding factor in (4.1) (see appendix A). In  this form, for given y and 8, 
X, = X,(v): the dependence on the rate parameter, internal energy and 
matching point x, (i.e. C) are all contained in K.  

Various tests of this similarity rule are shown in figures 8(a), ( b )  and ( c ) .  Only 
two cases are shown on each graph for reasons of clarity. For other values of the 
parameters the trends are very similar. The shock position is predicted reason- 
ably well in most cases, and the various scaling laws appear to be correct except 
at small values of v. Since v -+ 0 corresponds to a straight channel, it  is not sur- 
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prising, in this limit, that the asymptotic state is dependent, in particular, on the 
initial conditions at the entrance to the channel, i.e. at  xo. For a further discussion 
of this point, see $4.2. 

'I 

FIGURE 8. (a) Comparison of X ,  values for various A when 8 = 1.5, 8, = 1.0, so = 5. 
v, A = 0.1; 0, A = 0.01; -. theory. ( b )  Comparison of X ,  values for various 8, when 
6 = 1.5, A = 1.0, xo = 10. v, 8, = 1.0; 1, 8" = 2.0; -, theory. ( c )  Comparison of X ,  
values for various xo when 6 = 1.5, A = 1*0,8, = 1-0. v, xo = 10; 0, q, = 5 ;  -, theory. 

4.2. Temperature proJiles 

The magnitude of the translational temperature T,, at the downstream limit 
of the &shock, predicted by the approximate solution is significantly different 
from the corresponding value in the numerical solution. Figure 9 shows the 
variation of T, with the shape parameter v for several values of xo. Reservoir 
conditions, defined by A and 8, together with the gas parameter 8 are fixed. The 
behaviour for other values of A, 8 and 8 is very similar. 

Provided v is not small it seems likely that this error in the approximate theory 
is mainly due to the effects of area change through the 8-shock. In order to 
account for these errors the continuity equation (2.1) is replaced by 

?rlu = (1 +Ad Y;-lyl)-v - 1 - VAd y;-lyl + .. .. (4.7) 

Apparently the significant parameter in these perturbation calculations is 

a = vAdY;-l, (4.8) 

or, to first order, nl = nl(yl; a), etc. (4.9) 
The actual evaluation of the perturbation terms is rather complex and does 

not seem to be necessary. To determine the validity of (4.9) it is sufficient to 
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compare the numerical solutions at constant values of a. Lines on which 01. = 

const. are shown in figure 9. It is immediately clear that the similarity rule (4.9) 
is valid for sufficiently large values of v. 

0.4 

0-3 

Te 

0.2 

X, = 2-5 

Simple theory 

0.1 ’ I t I I I I I 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 

V 

FIGURE 9. Limiting temperatures in de-excitation shocks. 
--- , parallel pipe limit. 

Not surprisingly the rule breaks down for smaller values of v. In  the parallel 
pipe limit, v-+ 0, perturbations are presumably dominated by entry conditions 
at x = xo. It can be shown that if conditions at  x,, are calculated by assuming 
frozen flow between the reservoir and xo, and, if for x 2 xo the one-dimensional 
relations without area change are used, values of T, are obtained which are in 
reasonable agreement with the numerical computations (see figure 9 and Petty 
1968). As xo+ 00, these values converge on the &-shock limit. 

4.3. Comments 

As noted in the introduction, the approximate theory is less accurate when the 
lagging mode contains only a small fraction of the total internal energy (see also 
$5). Hence the comparison outlined above for a single vibrational mode is a 
reasonably severe test of the theory. Agreement with the numerical calculations 
is satisfactory. 

In  general the &-shocks were found at  least lo5 diameters downstream of the 
throat, though in certain situations, e.g. with larger values of A, shocks may occur 
a t  103-104 diameters but their structure becomes more diffuse in this limit (see 
figure 10). Obviously, in these latter cases, the approximate theory (valid as 
h -+ 0) can no longer be expected to hold. Moreover, since typical nozzle lengths 
in current hypersonic facilities are of the order of lo3 throat diameters, it would 
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appear that quantitative experimental confirmation of the theory is not feasible, 
but it may be possible, when h is not small, to establish whether similar qualita- 
tive trends may occur. 

For rate processes involving a large amount of energy, it can be shown that 
any 8-shock lies further upstream and an experimental investigation may be 
easier to carry out. Some discussion of the shock position, and of the asymptotic 
decay downstream of the shock, is given below in 9 5 for a fairly general family of 
rate processes. 

1.0 

0.8 

0.6 

T 

0.4 

0.2 

-1 0 1 2 3 4 

log,, 

Y = 0.03. e, = 0.5, 8 = 1.5, A = 10. 
FIGURE 10. A large A (diffuse shock) example for the nozzle shape defined by x,, = 6 ,  

5. General rate processes 
5.1. 8-shocks for power Zaw asgmptotes 

The analysis in this paper has so far been restricted to the ideal vibrationally 
relaxing gas, though it was noted in I1 that some of the results can easily be 
modified to include the case of a dissociating gas. One purpose of the present sec- 
tion is to obtain conditions under which 8-shocks occur for a general (single) 
rate process governed by 

(5.1) 
aa 
- at = m p ,  T ,  4, 

where a is again to be interpreted as the energy in the lagging mode. In  order to 
compare directly the results of this section with the analysis for the ideal relaxing 
gas discussed earlier, it is assumed initially that at low temperatures and low 
densities? 

F -  -pnT'G(a) (5 .2)  
t Some restriction must obviously be placed on this double limit. The relative sizes of 

p and T are strictly defined by the local solution, but it is usually sufficient to suppose that 
T = O(pa), 0 < a < 1. 
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for finite values of u. For this particular form of F the 8-shock position can be 
obtained explicitly and its dependence on the initial energy level u,,, found. This 
limiting behaviour is possible in a number of rate processes. The extension to 
non-seperable F is discussed in $5.2. 

If the total internal energy e = e (p ,  T ,  u), the energy equation can be re-written 
as 

qiogp) - (r - i)-v(iog T )  = (A/T)  au, (5.3) 

where r = Y -  (7- 1) ( 1  - l /PTP) (5.4) 

is an effective specific-heat ratio, Here y is the frozen specific-heat ratio and 

is the frozen expansion coefficient. In  addition 

(5.5) 

where c, is the frozen specific heat a t  constant volume. 
Near frozen solutions of (5.1) and (5.3), together with the usual continuity 

and momentum relations, can be found, apart from any non-uniformity in the 
reservoir region (see I), by the standard expansion 

T = To@) + AT,(x) + . . ., G = urn + A c ~ ~ ( z )  + . . . , (5.7) 
etc. From the zero-order frozen solution it follows that, subject to suitable res- 
trictions on l7 and its derivatives, 

as T + 0. Here 

and the limits p, T-t 0 are evaluated in the sense discussed above. (This should 
be understood throughout.) If I?, = r(p, T ,  ~ r ~ )  is independent of the density 
(e.g the ideal dissociating gas) 

K = exp (-1 1 rm-rf -"), (5.10) 

pal = w, 0, urn), (5.9) 

0 (Fa-  1 )  (rf-  1 )  T 
otherwise K must be found by numerical integration. 

It is easily shown, as in 11, that the expansion (5.7) is not uniformly valid if 

(5.11) 

diverges for large x. (This condition implies that Tl/To is unbounded as x -+ 00.) 

The corresponding result in I1 is easily interpreted in terms of the pseudo-entropy 
or entropy of the a-gas. In the general case considered here this interpretation 
is not as straightforward (see appendix B) but (5.11) is obviously associated 
with an effective heat addition. From the frozen solution and (5.2) it is found 
that (5.11) is divergent if 

L = i-v{i+n-ral+(rrn-i)q > 0, (5.12) 

which is a generalization of the corresponding result in I1 (see equation (1.1) 
of the present paper). 
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When Y = Ab'Ls (5.13) 

is O ( l ) ,  the leading terms in the expansion (5.7) are of the same size, and an alter- 
native solution must be sought. A principal feature of this region is the retention 
to zero order of the effective-heat-input term on the right-hand side of (5.3)) 
though this domain still corresponds to a near-frozen, low-temperature, low- 
density state. Appropriate dependent variables are 

and 

where 

u, p, 

0 = A-B T, 
C = A-E (goo - a), 

A 

h 

B = (rm- 1) v ~ - l .  

(5.14) 

(5.15) 

(5.16) 

(5.17) 

These dependent variables are equivalent, apart from some constant factors, 
to those used in I1 with b and 1 replaced by B and L respectively. Note that in 
(5.16) goo should strictly include any frozen contribution of magnitude greater 
than AR (see 11, $2). 

It follows that in this pseudo-entropy region P can be replaced by its asymp- 
totic behaviour (5.2) with G = G(g,,,). Consequently any non-linearity in G(a) is 
not important in this domain. 

It is easily shown that the governing equations are, to zero order, 

u =  u,, p = k / L m  0 0  ~ - 1 P - v  (5.18) 

and (5.19) 

(5.20) 

(These expressions should be compared with the corresponding relations in 11, 
$2.) The constants Uo and A, are defined by 

(5.21) 

As in 11, the solution of the non-linear equations (5.19) and (5.20) for the tem- 

0 = Y~rm-l )~{(~o/UoK)rm-l -  (6- 1 )  (I?,,,- l ) D  PL/L}-1/(8-1), (5.22) 

where D = A,G(a,) U,l(moU;l)n, (5.23) 

and the arbitrary constant of integration has been determined by matching with 
the downstream behaviour of the conventional near-frozen solution. For S > 1, 
the pseudo-entropy solution (5.22) is singular at  

1 u[ = ~ : + 2 { h ( l ,  1, ~,)-h(O,O,~,)} 

and A, = A(O,O, g,). 

perature is easily obtained and can be written 
h 

(5.24) 

Note especially that the shock position is a monotonically decreasing function of 
a, (in general G(a) > 0). The principal dependence of q on goo is given by the 
factor {G(gw))-l'L. 
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5.2.  S-shocks for general F 
Although the initial analysis described above was restricted to power-law 
behaviours, similar results can be obtained for quite general (non-separable) 3’ 
with little change in the argument. In  this section no restriction is placed on the 
asymptotic form of A other than d A / d x  > 0.  

It has already been observed that the first difficulty encountered with the con- 
ventional near-frozen expansion is the divergence of the pseudo-entropy integral. 
In the present context this is equivalent to the statement that 

Sul(x)+co as x-+co, (5.25 a) 

where the asymptotic growth of Sul is described by 

The behaviour of this integral implicitly defines the stretching for the pseudo- 
entropy rbgime. In  general this stretching may be quite complex but it is apparent 
from the previous discussion that this region will correspond to a near-frozen, 
low-temperature, low-density state in which the heat-input term on the right- 
hand side of (5.3) is significant. 

Hence, in terms of the unstretched variables, the governing equations reduce 

p = m/U,A, u = U,, (5.26) to 

and 

-+ 1 1 1dT A,da 
A r , - i m A  T dA 

(5.27) 

(5.28) 

where F,  is the asymptotic expansion of F in the pseudo-entropy limit. These 
relations can be combined to give a single equation for the temperature distri- 
butions, and it folIows from the form of this relation that a S-shock is possible 
only if lF,l /T-+co, as T+co ( A  fixed). (5 .29)  

Note that the functional form of Fm corresponds to the low-temperature be- 
haviour of P. In (5.29) T should strictly be replaced by a scaled temperature @ 
which is O(1) in the pseudo-entropy domain. The limit in (5.29) then corresponds 
to 0 --f 00. (It should be stressed that it is the behaviour of P, for 0 + 00 that is 
important and not the behaviour of F for finite temperatures.) Equations 
(5.25a, b )  and (5.29) provide necessary and sufficient conditions for the existence 
of 6-shocks, replacing the simpler conditions L > 0, 6 > 1 which are true €or 
the power law forms of F and A .  

It is significant that throughout the analysis of this section only a knowledge 
of P(p, T, era) is required, i.e. its behaviour near the initial energy state. The 
validity or otherwise of the ideal rate equation (2 .4)  used earlier in $52-4 has 
been questioned from several points of view (Zienkiewicz & Johannesen 1963; 
Simpson & Chandler 1969; and for a review of nozzle data see Hall & Treanor 
1968). In the context of the earlier sections, (2.4) should strictly be regarded as 
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a simple model equation by means of which the perturbation analysis can be 
tested against exact numerical calculations. Here, it is sufficient to point out 
that the present analysis holds if the rate equation can be formulated in the near- 
frozen limit in terms of local conditions and, if necessary, any initial parameters. 
(Thus a simple dependence on the flow history of the type F = F(p, T, cr; cr-, em), 
where e = cr - 3, can be permitted.) This restriction is rather less severe than the 
usual postulate that the rate of change of internal energy is a function only 
of local conditions for all values of cr. 

However, it is important to note that, if the solution in the shock layer is 
required, the behaviour of the rate equation at  all energy levels may be important. 
For the ideal gas discussed in 11, the appropriate scaling in the shock layer is 
defined by the singular behaviour corresponding to (5.22) and by the statement 
that this behaviour is limited by the inclusion of the equilibrium factor 3 in the 
rate equation. Since 3 is a function of the translational temperature alone, this 
leads, in particular, to the result that crm - cr = 0(1) within the shock. For 
other rate processes in which the equilibrium curve is also density dependent 
the structure may be more complex. 

6.3. Limiting solutions 
Even though it is apparent that the shock structure for a specific P requires 
detailed calculations, some progress can be made with respect to the asymp- 
totic decay downstream of the &-shock. For finite back pressures, the downstream 
state is limited by the appearance of an a-shock (see $3).  Downstream of the 
a-shock there is a return to a subsonic equilibrium state (u N A-l). (The nozzle 
is assumed throughout to grow monotonically with x downstream of any geo- 
metric throat: an asymptotic return to a uniform duct can be permitted as a 
special case.) 

Of more interest is the decay when the nozzle back pressure is effectively zero 
(alternatively this can be regarded as the behaviour upstream of any limiting 
a-shock). In  I1 a discussion of the decay laws for the ideal rate equation showed 
that a wide variety of asymptotic states could exist. Cheng & Lee (1967, 1968) 
have examined similar limiting solutions for a dissociating gas. Here, an investi- 
gation of the decay laws is presented for the more general form (5.2) which in- 
cludes the ideal relaxing gas and a dissociating gas as particular examples. 

It was shown in I1 that the asymptotic limiting states for zero back pressure 
could be found from a suitable model equation which was deduced by neglecting 
the equilibrium term in the rate equation. If &-shocks occur this model equation 
is quantitatively incorrect, but it should be noted that it still predicts the appro- 
priate qualitative behaviour. 

In  the present case, after making corresponding assumptions, the pseudo- 
entropy and rate equations can be combined to yield 

(5.30) 

and (5.31) 
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where w = (L/h)l/P{Tz(rm-1)~}1-8, = XL 

and p = S/(S- 1). 

(5.32) 

(5.33) 

The modified rate parameter h includes factors due to the mass flow and the 
asymptotic constant speed. (The assumption that the speed is constant is con- 
sistent with possible limiting forms of the energy equation.) 

It has been observed that the energy v always decays asymptotically, even 
though in certain circumstances it does so through a series of de-excitation shocks. 
Since it is the decay downstream of any primary 8-shock, or local temperature 
maximum, that is of interest, it is sufficient to consider only the low-energy 
behaviour of G which is assumed to be 

G -  vr, g + O .  (5.34) 

It seems likely on physical grounds that r 2 1. The case r = 1 was considered in 
11; only r > 1 is discussed here. For simplicity it is assumed that (5.34) holds for 
all values of r. (A slight modification in the ensuing argument enables the 
analysis to be applied in the primary de-excitation region even if v is not small 
there.) 

Prom (5.30) and (5.31) it follows that the appropriate asymptotic behaviour 
is described by 

1-6 1-6 

where 

Equation (5.35) is equivalent to the first-order equation 

dy ( l + p ) y - C - Q Z  
d 5  T -PI6 

(1-8)- = 9 

where 

and 
(Br- l)(S- 1) 

Y P1= P/ (d -  1). l U =  ( r+8-1 )  

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

Phase-space trajectories follow immediately from (6.37). A detailed evaluation 
depends on the various parameters and the results are summarized in figure 11, 
which should be compared with the corresponding diagram in 11. For r = 1 
regions I) and C have an upper barrier corresponding to an equilibrium decay. 
In general this decay is exponentially fast, and the power-law behaviour noted 
in figure 11 will always dominate away from any 6-shock transition. 

For region F ,  a cursory examination suggests that there may be three possible 
limiting states, corresponding respectively to those in C, D and E. In the limit 
A+ 0 it follows from the pseudo-entropy result (5.22) that the correct behaviour 
is 

(The temperature profile (5.22) is valid asymptotically for both regions F and 
E.) A careful examination of the integral curves of (5.37) also leads to this result 
in F for A+ 0. 
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Appendix A. Non-dimensional variables 

in the text are 
If primes denote dimensional quantities, the non-dimensional variables used 

(A 1) I p = p' /pk ,  T = T'/Tk, s2 = In'/Ink, 
u = d / R T k ,  u = u'I J(RTk),  
A = A'(d)/A'(h') and 5 = x'/h', 

where R is the gas constant, h' is the minimum nozzle height and the suffix 00 

denotes initial reservoir conditions. 
The rate parameter A is defined by 

and the non-dimensional mass flow rate by 

24 Fluid Me ch. 37 
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Appendix B. Pseudo-entropy 
The energy equation 

de +pa( l / p )  = 0 

TdS, = de, +pa( l / p )  = - e,da, can be re-written as 

where de, = e p  dp + eT dT, (B 3) 

and S, corresponds to the pseudo-entropy defined in 11. 
For internal relaxation, where the various energies are additive (e,  = l), 8, is 

simply entropy production in the active modes and, as noted earlier, is equivalent 
to the entropy of Johannesen’s a-gas. For a reacting gas the situation is more 
complex: de, is the internal energy change at constant composition and dS, 
must be regarded as an entropy change relative to a frozen flow. It is useful to 
refer to S, as the pseudo-entropy, though this definition in the reacting case is not 
unique, since it is apparent that the coefficient on the right-hand side of (B 2) 
will depend on the particular thermodynamic variables employed. However, the 
definition in no way affects the analysis of Q 5. 
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